Compact Weighted Composition Operators and Fixed Points in Convex Domains

نویسندگان

  • DANA D. CLAHANE
  • D. CLAHANE
چکیده

We extend a classical result of Caughran/H. Schwartz and another recent result of Gunatillake by showing that if D is a bounded, convex domain in C, ψ : D → C is analytic and bounded away from zero toward the boundary of D, and φ : D → D is a holomorphic map such that the weighted composition operator Wψ,φ is compact on a holomorphic functional Hilbert space (containing the polynomial functions densely) on D with reproducing kernel K satisfying K(z, z)→∞ as z → ∂D, then φ has a unique fixed point in D. We apply this result by making a reasonable conjecture about the spectrum ofWψ,φ based on previous one-variable and multivariable results concerning compact weighted and unweighted composition operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

Research Article Compact Weighted Composition Operators and Fixed Points in Convex Domains

Let D be a bounded, convex domain in Cn, and suppose that φ :D→D is holomorphic. Assume that ψ : D → C is analytic, bounded away from zero toward the boundary of D, and not identically zero on the fixed point set of D. Suppose also that the weighted composition operator Wψ,φ given by Wψ,φ( f )= ψ( f ◦φ) is compact on a holomorphic, functional Hilbert space (containing the polynomial functions d...

متن کامل

Weighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces

‎In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

Weighted composition operators between Lipschitz algebras of complex-valued bounded functions

‎In this paper‎, ‎we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces‎, ‎not necessarily compact‎. ‎We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators‎. ‎We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005